In situ Biological Dose Mapping Estimates the Radiation Burden Delivered to ‘Spared’ Tissue between Synchrotron X-Ray Microbeam Radiotherapy Tracks
نویسندگان
چکیده
Microbeam radiation therapy (MRT) using high doses of synchrotron X-rays can destroy tumours in animal models whilst causing little damage to normal tissues. Determining the spatial distribution of radiation doses delivered during MRT at a microscopic scale is a major challenge. Film and semiconductor dosimetry as well as Monte Carlo methods struggle to provide accurate estimates of dose profiles and peak-to-valley dose ratios at the position of the targeted and traversed tissues whose biological responses determine treatment outcome. The purpose of this study was to utilise γ-H2AX immunostaining as a biodosimetric tool that enables in situ biological dose mapping within an irradiated tissue to provide direct biological evidence for the scale of the radiation burden to 'spared' tissue regions between MRT tracks. Γ-H2AX analysis allowed microbeams to be traced and DNA damage foci to be quantified in valleys between beams following MRT treatment of fibroblast cultures and murine skin where foci yields per unit dose were approximately five-fold lower than in fibroblast cultures. Foci levels in cells located in valleys were compared with calibration curves using known broadbeam synchrotron X-ray doses to generate spatial dose profiles and calculate peak-to-valley dose ratios of 30-40 for cell cultures and approximately 60 for murine skin, consistent with the range obtained with conventional dosimetry methods. This biological dose mapping approach could find several applications both in optimising MRT or other radiotherapeutic treatments and in estimating localised doses following accidental radiation exposure using skin punch biopsies.
منابع مشابه
Tolerance of arteries to microplanar X-ray beams.
PURPOSE The purpose is to evaluate effects of a new radiotherapy protocol, microbeam radiation therapy, on the artery wall. In previous studies on animal models, it was shown that capillaries recover well from hectogray doses of X-rays delivered in arrays of narrow (< or = 50 microm) beams with a minimum spacing of 200 microm. Here, short- and long-term effects of comparable microplanar beam co...
متن کاملIncreased cell survival and cytogenetic integrity by spatial dose redistribution at a compact synchrotron X-ray source
X-ray microbeam radiotherapy can potentially widen the therapeutic window due to a geometrical redistribution of the dose. However, high requirements on photon flux, beam collimation, and system stability restrict its application mainly to large-scale, cost-intensive synchrotron facilities. With a unique laser-based Compact Light Source using inverse Compton scattering, we investigated the tran...
متن کاملMonte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system.
Microbeam therapy is established as a general concept for brain tumour treatment. A synchrotron based x-ray source was chosen for experimental research into microbeam therapy, and therefore new simulations were essential for investigating the therapy parameters with a proper description of the synchrotron radiation characteristics. To design therapy parameters for tumour treatments, the newly u...
متن کاملEnergy spectra considerations for synchrotron radiotherapy trials on the ID17 bio-medical beamline at the European Synchrotron Radiation Facility.
The aim of this study was to validate the kilovoltage X-ray energy spectrum on the ID17 beamline at the European Synchrotron Radiation Facility (ESRF). The purpose of such validation was to provide an accurate energy spectrum as the input to a computerized treatment planning system, which will be used in synchrotron microbeam radiotherapy trials at the ESRF. Calculated and measured energy spect...
متن کاملAn in-vivo study on the energy dependence of X-ray biological effectiveness
Background: The International Commission on Radiological Protection (ICRP) has attributed the same relative risk for X and gamma radiations of all energies. Several studies have proven that the biological effect of low energy photon is more than that of higher ones. The assessment of risks is important due to the wide use of low energy X-rays for mammography screening and other diagnostic appli...
متن کامل